Solar Forecasting in a Challenging Insular Context

نویسندگان

  • Philippe Lauret
  • Elke Lorenz
چکیده

This paper aims at assessing the accuracy of different solar forecasting methods in the case of an insular context. Two sites of La Réunion Island, Le Tampon and Saint-Pierre, are chosen to do the benchmarking exercise. Réunion Island is a tropical island with a complex orography where cloud processes are mainly governed by local dynamics. As a consequence, Réunion Island exhibits numerous micro-climates. The two aforementioned sites are quite representative of the challenging character of solar forecasting in the case of a tropical island with complex orography. Hence, although distant from only 10 km, these two sites exhibit very different sky conditions. This work focuses on day-ahead and intra-day solar forecasting. Day-ahead solar forecasts are provided by the European Center for Medium-Range Weather Forecast (ECMWF). This organization maintains and runs the Numerical Weather Prediction (NWP) model named Integrated Forecast System (IFS). In this work, post-processing techniques are applied to refine the output of the IFS model for day-ahead forecasting. Statistical models like a recursive linear model or a nonlinear model such as an artificial neural network are used to produce the intra-day solar forecasts. It is shown that a combination of the IFS model and the neural network model further improves the accuracy of the forecasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A benchmarking of machine learning techniques for solar radiation forecasting in an insular context

In this paper, we propose a benchmarking of supervised machine learning techniques (neural networks, Gaussian processes and support vector machines) in order to forecast the Global Horizontal solar Irradiance (GHI). We also include in this benchmark a simple linear autoregressive (AR) model as well as two naive models based on persistence of the GHI and persistence of the clear sky index (denot...

متن کامل

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

Interval-based Solar PV Power Forecasting Using MLP-NSGAII in Niroo Research Institute of Iran

This research aims to predict PV output power by using different neuro-evolutionary methods. The proposed approach was evaluated by a data set, which was collected at 5-minute intervals in the photovoltaic laboratory of Niroo Research Institute of Iran (Tehran). The data has been divided into three intervals based on the amount of solar irradiation, and different neural networks were used for p...

متن کامل

The potential role of forecasting for integrating solar generation into the Australian National Electricity Market

The future construction of utility-scale solar power plants in Australia will present challenges to integrate these plants into the existing electricity industry. This paper considers the likely solar forecasting requirements to facilitate the integration of photovoltaic and concentrating solar thermal plants into the Australian National Electricity Market (NEM). Many market participants may be...

متن کامل

Day-Ahead Solar Forecasting Based on Multi-level Solar Measurements

The growing proliferation in solar deployment, especially at distribution level, has made the case for power system operators to develop more accurate solar forecasting models. This paper proposes a solar photovoltaic (PV) generation forecasting model based on multi-level solar measurements and utilizing a nonlinear autoregressive with exogenous input (NARX) model to improve the training and ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016